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Agricultural Opportunity: =

USES

Renewable Fuels:
— Ethanol
— Bio-Diesel

Renewable Power:
— Electricity
— Heat or CHP

Renewable Chemicals
— Plastics

— Solvents

— Chemical Intermediates

. . — Phenolics
Blomass Conversio iy v
o — Furfural
Feedstock Processe et
— Acetic Acid
— Carbon black
— Trees - Enzymatic Ferme _ pzirmosn *
— Grasses - Gasl/liquid Ferme — Dyes, Pigments, and
— Agricultural Crops - Acid Hydrolysis/Fe Ink
— Agricultural Residues _ Gasification — Detergents
— Animal Wastes - Combustion =
— Municipal Solid Waste - Co-firing
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** Displacement of oil

— Commioaiity
chemicals

» polylactic acid
» 3-HP; 1-5 PD

» solvents
» aclds

— Fuels
» ethanol
» Dlodiesel

* power
Employment

> Below ground - Carb
Sequestrati
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What arethe limitation of Metabolic
Engineering in E. coli?

1. Can wecombinethe beneficial features of
aer obic and anaer obic metabolismn?

» Aerobic.  High growth rate, low NADH,
external electron acceptor (O,)

» Anaerobic: High glycolyticflux, low CO,
production, low cdll yield,
high product yield

2. Asan example, glucoseto acetate (pyruvate)



Overview of Metabolism

Aerobic, + oxygen Anaerobic, - oxygen
Glucose, C.H,,0O, Glucose, C, H,, O,
Cell ]\/655 » Cell Mass

50% of Carbon 5% of Carbon

CO, + 36 ATP (max) Fermentation Products + 2 ATP
50% of carbon 95% of Carbon

(most commodity products)



Overview of the Problem

Aerobic, + oxygen Anaerobic, - oxygen
Glucose, C;H,,O;, Glucose Glucose, C, Hy, Og
NAD > | |
Glycolysis
NADH y y
2 Pyruvate 2 Pyruvate + 2 ATP
iTCA NADH > (TCA incomplete)
NAD
CO,
+ 2 L actate, Succinate
Cell Mass or
2 Ethanol + 2 CO,
CO, +36 ATP (max) Fermentation Products+ 2 ATP
50% of carbon as cell mass 5% of carbon as cell mass

50% of carbon as CO, 95% of carbon as product



Three Problem Areas

1. Cells>Too many —reduce ATP

2. Volatiles 2 Too much carbon lost
— Interrupt TCA cycle, inactivate ADH

3. Fermentation products = potential sink
— Inactivate pathways




Nakamoto et al., 1999
Ann. Rev Biophys. Biomol. Struct. 28:205-234.
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Strain Construction

1. Homologous recombination, confirmed by PCR and sequence,
one mutation per strain

2. Phage P1 to combine mutations into single strain

3. Hanking FRT sites and FLP recombinase to remove
antibiotic markers used for selection

4. Fusaric acid selection to create deletions from Tn10 insertions

5. PCR cloning and sequencing to confirm each step



5 Glucose
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Fermentation Conditions:

» mineral salts, 37°C  » pH controlled @ 7.00

> 3% glucose with 45% w/w K OH

(11.4 M)
» starting OD..,= 0.1
9 80 > DO controlled @ 5% of
> 1% inoculum air saturation by

> 10L initial volume ~ @diustingtheratio of
air, O, and N,
> agitation set @ 450

rpm Gasflow 1 L/min (0.1vvm)



Glucose (mM)

Base Consumed
(mmoles - L}

Strain W3110 (wild type) ~30 ATP/glu
" Strain SZz47 (DfocA-pflB DfrdBC DIdhA) ~30 ATP/glu
Strain TC24(DfocA-pfIB DfrdBC DIdhA DatpFH) ~3ATP

Strain TC36 (DfocA-pflB DfrdBC DIdhA DatpFH
DadhE DsucA) ~3.8 ATP/glucose
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Comparison of Strains
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Comparison of Strains
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* Entranceinto stationary phase
* Exhaustion of glucose
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=» Accumulation of pyruvate indicates
that glucose uptake & glycolysis may
not be limiting acetate production.

=»W3110 accumulated ~ 3 fold higher
concentrations of dicarboxylic acids
than the engineered strains.

=» |n general, accumulation of
dicarboxylic acids was correlated
with entry into stationary phase.

=» DatpFH resulted in ~25 fold increase
In final acetate concentration/yield.

=» DadhE DsucA resulted in a further 1.4
fold increase in acetate concentration.
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Fermentation of 3% + 3% Glucose to Acetate
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Acetate Production Can Be Il mproved By
Altering The Process Conditions (T C36)

Cell Mass Carbon Recovery BN Acetate Yield
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Conclusions

E. coli can be engineered for efficient production of redox
neutral & oxidized products (ace, pyr).

)atpFH increased glycolytic flux by over 50%, acetate
concentration and yield by 3-fold.

)adhE ) sucA resulted in an additional increase in acetate
concentration and yield, and improved carbon balance.

Theincreasein glycolytic flux observed for TC24 & TC36
was attributed to the ) atpFH which reduced ATP production
and provided gratuitous hydrolysis of excess ATP.

Max acetate yields of 86% of theoretical; 10% of substrate
carbon converted into biocatalyst

Product stream relatively pure after cell removal



